

Theory of the hadron (baryon) spectrum

- Missing resonances, N* program at Jlab
- · Unitary, multi-channel analysis
- Competing models of the short-distance qq interaction
 - Can this issue be resolved by examining mixing angles in S_{11} and D_{13} states?
- New insights from lattice QCD calculations
 - Flux tube potential picture of QQ, QQQ
 - String breaking
 - Dramatic behavior of baryon masses in low \boldsymbol{m}_{π} limit

Missing resonances

- Symmetric quark models predict many positive (and doubly-excited negative) parity states not seen in analyses of data
- PDG states were based on analyses of $N\pi$ elastic scattering
 - Are there states which couple weakly to $N\pi$?
 - These can be expected to be "missing"
 - Evidence for them should show up in other $(N\pi\pi, \Lambda K,...)$ final states, excited with EM probes from nucleon targets (make N* or Δ *)
 - Their existence will be **established** in multichannel analyses of many different final states

Missing resonances...

- · R. Koniuk and N. Isgur
 - Elementary-meson emission decay model (quarks directly emit mesons)
 - Baryon structure from Isgur-Karl model
 - \Rightarrow Showed missing states correspond in number and energy to those predicted to decouple from N π
- ³P₀: quark-pair creation decay model
 - Hadrons decay by creation of quark pair with quantum numbers of the vacuum
 - String breaking has same structure
 - Emitted mesons have structure
 - Baryons wave functions from structure model
- ⇒Can correlate many decays with a couple of parameters, predict which final states will show evidence of new states

Nucleon model states and $N\pi$ couplings

Δ model states and N π couplings

Jlab Users Group Mtg. 2003-6

Predictions for branching fractions

- Can calculate decay branching fractions if calculate enough decay channels!
 - Have looked at decays of N*, Δ * states to N, Δ , N(1440), Δ (1600)... and π , η , η' , ρ , ω
 - Also decays to strange final states, including Λ , Σ , Σ^* , $\Lambda(1405)$,... and K, K* (not shown below)

Predictions for branching fractions...

Have we seen new resonances?

- Effect seen in γp to ΛK^+ at W ~1900 MeV at SAPHIR; C. Bennhold et al.
 - Could be D₁₃ predicted by model (has sizeable γN and ΛK coupling)
 - Or the effect of more than one state
- Need coupled channels to confirm

Have we seen new resonances?...

- Possible third S₁₁ resonance at ~1.8 GeV
 - Rapidly rising cross section for γN to $N\eta$ above existing S_{11} states at GRAAL
 - Similar rise seen in CLAS in η photoproduction experiments
 - Very interesting possibility for quark models!
- Evidence from Np, $\Delta\pi$ electroproduction in CLAS that P₁₃(1720) region not understood
 - Two states? Hard to fit in models...
- Huge potential for interesting new results from Jlab experiments!
 - Need multi-channel analysis to firmly establish new states

Unitary multi-channel analysis

- Based on K-matrix: KSU group, D.M. Manley and collaborators
- Effective Lagrangians: T. Sato and T.-S. H. Lee;
 GWU group: C. Bennhold, H. Haberzettl,...
- CMU-LBL (Cutkosky) method: Vrana, Dytman and Lee, Phys. Rept. 328, (200), 181 (Pitt-ANL)
 - Extend $\pi N \Rightarrow \pi N$ analysis to many other channels
 - Nπ, Nη, Nγ, Nρ, $\Delta \pi$, Nσ, Λ K, Σ K,...
 - Incorporate constraints from analyticity
 - Impose multi-channel unitarity
- ⇒Resonance parameters are extracted from analysis of partial-wave amplitudes in all open channels simultaneously

Coupled Channel Picture of Resonance Excitation

- Each resonance can be reached through each asymptotic channel
- T matrix provides unitary, analytic structure
- all channels (e.g. πN , ρN) couple to all other channels in intermediate state
- photon multipoles $(E_{l\pm}, M_{l\pm})$ directly related to T

$$T(J^{\pi}) = \begin{pmatrix} T_{\pi N \to \pi N} & T_{\eta N \to \pi N} & T_{\gamma N \to \pi N} & T_{\rho N \to \pi N} & T_{\kappa N \to \pi N} & T_{\kappa \Sigma \to \pi N} \\ T_{\pi N \to \eta N} & T_{\eta N \to \eta N} & T_{\gamma N \to \eta N} & T_{\rho N \to \eta N} & T_{\kappa N \to \eta N} & T_{\kappa \Sigma \to \eta N} \\ T_{\pi N \to \gamma N} & T_{\eta N \to \gamma N} & T_{\gamma N \to \gamma N} & T_{\rho N \to \gamma N} & T_{\kappa N \to \gamma N} & T_{\kappa \Sigma \to \gamma N} \\ T_{\pi N \to \rho N} & T_{\eta N \to \rho N} & T_{\gamma N \to \rho N} & T_{\rho N \to \rho N} & T_{\kappa N \to \rho N} & T_{\kappa \Sigma \to \rho N} \\ T_{\pi N \to \sigma N} & T_{\eta N \to \sigma N} & T_{\gamma N \to \sigma N} & T_{\rho N \to \sigma N} & T_{\kappa N \to \sigma N} & T_{\kappa \Sigma \to \sigma N} \\ T_{\pi N \to \kappa N} & T_{\eta N \to \kappa N} & T_{\gamma N \to \kappa N} & T_{\rho N \to \kappa N} & T_{\kappa N \to \kappa N} & T_{\kappa \Sigma \to \kappa N} \\ T_{\pi N \to \kappa \Sigma} & T_{\eta N \to \kappa \Sigma} & T_{\gamma N \to \kappa \Sigma} & T_{\rho N \to \kappa \Sigma} & T_{\sigma N \to \kappa N} & T_{\kappa \Lambda \to \kappa \Sigma} & T_{\kappa \Sigma \to \kappa \Sigma} \end{pmatrix}$$

Results of Pitt-ANL analysis

state	Mass (MeV)	Width (MeV)	B _{Nπ} (%)	Β _{Νη} (%)
S ₁₁ (1535)	1545(3)	127(19)	35(4)	55(5)
(PDG)	1520-1555	100-250	35-55	30-55
S ₁₁ (1650)	1693(12)	225(40)	73(2)	-2(1)
(PDG)	1640-1680	145-190	55-90	3-10
D ₁₃ (1520)	1520(3)	118(4)	61(2)	0(1)
(PDG)	1515-1530	110-135	50-60	
D ₁₃ (1700)	1729(33)	178(133)	4(1)	7(1)
(PDG)	1650-1750	50-150	5-15	

QCD-inspired models of baryons

- Work in adiabatic (Born-Oppenheimer) approximation
- · Effect of glue is to generate qq potentials
 - Confining potential:
 - flux-tube?
 - Dirac structure in relativistic treatments?
 - Short-distance (residual) interactions
 - OGE model: link to meson and heavy-quark physics
 - OBE model: chiral symmetry dominates soft QCD spectrum
 - Instanton-induced model: QCD vacuum structure implies 't Hooft's instanton-induced interaction

Effective degrees of freedom

- · One popular picture:
 - Constituent quarks
 - Glue in flux tubes (confinement)

⇒Constituent quarks:

 \Rightarrow Dynamically generated constituent masses, which run with Q^2 : $m_{u,d} \approx K_{u,d} \approx \Lambda_{QCD} \approx$ 200 MeV

⇒Effective sizes, form factors

What are their residual interactions?

- Ground-state spectrum suggests flavor-dependent shortrange (contact) interactions
- One-gluon exchange: good fit to ground states with (color-magnetic dipole-dipole), e.g. Δ-N, Σ-Λ
 ⇒ DeRujula, Georgi, Glashow

$$M = \sum_{i=1}^3 m_i + rac{2lpha_s}{3} rac{8\pi}{3} \langle \delta^3(\mathbf{r})
angle \sum_{i < j=1}^3 rac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j}$$

- Explains regularities in meson spectrum (e.g. evolution of vector-pseudoscalar splitting with quark mass)
 - Unclear why this should work for light quarks...
- Taken at face value predicts tensor interaction

$$H_{ ext{hyp}}^{ij} = rac{2lpha_s}{3m_im_j} \left\{ rac{8\pi}{3} \mathbf{S}_i \cdot \mathbf{S}_j \delta^3(\mathbf{r}_{ij}) + rac{1}{r_{ij}^3} \left[rac{3(\mathbf{S}_i \cdot \mathbf{r}_{ij})(\mathbf{S}_j \cdot \mathbf{r}_{ij})}{r_{ij}^2} - \mathbf{S}_i \cdot \mathbf{S}_j
ight]
ight\}$$

 And spin-orbit interactions, at a level not present in spectrum

- Isgur and Karl PRD20, (1979) 768
- Contact splitting active in L=1 excited states
- Characteristic splitting is $(m_{\Delta}-m_{N})/2$
- Add consistent tensor interaction
- No strong evidence for tensor from spectrum
- Best evidence from decays, S₁₁(1535)→Nη

- Variational calculation in large HO basis (SC, N. Isgur)
 - String confinement, plus associated spin-orbit
 - Include OGE Coulomb, contact, tensor, spin-orbit
 - Relativistic KE, extended constituent quarks
 - parameterize momentum dependence, running coupling...

$$\left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\text{cont}}} \frac{8\pi}{3} \alpha_s(r_{ij}) \frac{2}{3} \frac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j} \left[\frac{\sigma_{ij}^3}{\pi^{\frac{3}{2}}} e^{-\sigma_{ij}^2 r_{ij}^2}\right] \left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\text{cont}}}$$

- Photocouplings calculated with H_{int} expanded to $O(p^2/m^2)$
- Strong decays calculated in pair creation (${}^{3}P_{0}$) model (with W. Roberts)
- Reasonable agreement; allows prediction of favorable channels to find 'missing' baryons
- Puzzles: Roper mass; $\Lambda 3/2$ -(1520)- $\Lambda 1/2$ -(1405); L=1 too light by 50 MeV, positive parity too massive by 50 MeV,...

- Another possibility: should light quarks exchange pions? Robson; Buchmann, Faessler,...
- Claim gluons not active in light-quark hadrons: flavor dependence through exchange of octet of pseudoscalars (GBE)
- Contact interaction: $H_\chi \sim -\sum_{i < j} rac{V(\mathbf{r}_{ij})}{m_i m_j} \pmb{\lambda}_i^{\mathrm{F}} \cdot \pmb{\lambda}_j^{\mathrm{F}} \, \pmb{\sigma}_i \cdot \pmb{\sigma}_j$
- Order of states inverted? Natural with GBE
 - ⇒ Glozman & Riska (GR)

- GR fit radial matrix elements of $V(r_{ij})$ to spectrum
- Calculated in variational H.O. basis with consistent tensor Glozman, Plessas, Theussl, Wagenbrunn, & Varga
- Add nonets of exchange vector mesons and scalars
 - Relativistic K.E., string confinement; calculate decays
 - Problems can arise in some of these models with decays (poor results with OBE)
 - E.g. $N\eta$ decay of S11(1535) not possible without vector exchange added to GBE

- Results for spectrum:

- Another flavor-dependent possibility: instanton-induced interactions
- Present if qq in S-wave, I=0, S=0 state $\langle q^2; S, L, T|W|q^2; S, L, T\rangle = -4g\,\delta_{S,0}\,\delta_{L,0}\,\delta_{T,0}\mathcal{W}$
- W is a contact interaction (has range λ)
 - causes no shifts in Δ^* masses
 - No tensor interaction, or spin-orbit forces
- Applied to excited states Blask, Bohn, Huber, Metsch & Petry
 - solve Bethe-Salpeter equation

Instanton-induced interactions

· Quarks confined by linear q-q potential

$$V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = A_3 + B_3 \sum_{i < j} |\mathbf{r}_i - \mathbf{r}_j|$$

 Relativistic treatment, so need to choose Dirac structure of potential

$$\begin{aligned} \mathbf{A}_3 &= \frac{a}{4} \begin{bmatrix} \mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \gamma^0 \otimes \gamma^0 \otimes \mathbb{I} + \gamma^0 \otimes \mathbb{I} \otimes \gamma^0 + \mathbb{I} \otimes \gamma^0 \otimes \gamma^0 \end{bmatrix} \\ \mathbf{B}_3 &= \frac{b}{2} \begin{bmatrix} -\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \gamma^0 \otimes \gamma^0 \otimes \mathbb{I} + \gamma^0 \otimes \mathbb{I} \otimes \gamma^0 + \mathbb{I} \otimes \gamma^0 \otimes \gamma^0 \end{bmatrix} \end{aligned}$$

- · Chosen to reduce spin-orbit effects
- Produces correct Regge trajectories
- For N*,D* only five parameters: m_n , g_{nn} , a, b, λ

Instanton-induced interactions...

- spectrum
 of ∆* only
 from
 confining
 potential
- Blask, Bohn, Huber, Metsch & Petry

N* spectrum from 't Hooft's force

Nature of short-range qq interactions

- Spectrum alone cannot distinguish models
 - Wave functions much more sensitive
- Baryons have near degenerate excited states
 - two orbital spaces in 3q system, degenerate l=1 orbital excitations
 - two possible total quark spins
 - Degeneracy broken by spin-spin interactions $(L=0 \times S=0 \text{ operator})$
 - Large mixing caused by tensor, spin-orbit,...
 interactions which must be present (relativity)

Why are mixing angles important?...

- Chizma and Karl, hep-ph/0210126
- Different effective interactions, adjusted to contact splittings, have very different tensor (and spin-orbit) interactions
 - Cause different mixing angles in low-lying S_{11} & D_{13} states
- ⇒ A determination of mixing angles can establish nature of effective interactions between quarks

Low lying excited baryons

Negative-parity excited states

$$L^{P}=1^{-} + S_{qqq}(1/2) = 1/2^{-}, 3/2^{-}$$

 $L^{P}=1^{-} + S_{qqq}(3/2) = 1/2^{-}, 3/2^{-}, 5/2^{-}$

- Orbital excitations in ρ or λ
- 2(N1/2⁻,N3/2⁻), N5/2⁻, D1/2⁻, D3/2⁻
 - Two N1/2⁻ model states,
 S=1/2 or S=3/2,
 - are S_{11} in $\pi N \Rightarrow \pi N$
 - resonances N(1535) and N(1650) in analyses
 - Two N3/2 states are $D_{13} \Rightarrow N(1520)$, N(1700)

Low lying excited baryons...

- Without spin-dependent interactions between the quarks
 - Two degenerate S_{11} states (S=1/2 and S=3/2) and two degenerate D_{13} states
- Contact interactions breaks degeneracy
 - Proportional to $\Sigma_{i < j}$ \mathbf{S}_i . \mathbf{S}_j $\mathbf{f}(\mathbf{r}_{ij})$
 - Tensor and spin-orbit interactions mix two S=1/2 and S=3/2 states with same J^P

Mixing angles

Physical states are admixtures of two possible L,S combinations

```
N(1535)1/2^- = \cos(\theta_S) N^2P1/2^- - \sin(\theta_S) N^4P1/2^-

N(1650)1/2^- = \sin(\theta_S) N^2P1/2^- + \cos(\theta_S) N^4P1/2^-
```

```
N(1520)3/2^- = \cos(\theta_D) N^2P3/2^- - \sin(\theta_D) N^4P3/2^-

N(1700)3/2^- = \sin(\theta_D) N^2P3/2^- + \cos(\theta_D) N^4P3/2^-
```

- How can θ_S and θ_D be determined?
- Lattice QCD, with enough time (CPU and elapsed!)
 and clever choice of correlators... or model of
 baryon structure and strong decays

Unmixed model states

- Work done with W. Roberts (Jlab/ODU)
- Variational calculation in large HO basis
 - Unmixed states are orthogonal eigenstates of H, with definite L(=1) and S_{aaa} (1/2 or 3/2)
- OGE contact and color-Coulomb interactions
 - Turn off any interactions which are not simultaneous spin and spatial scalars
 - No tensor, spin-orbit (from confinement, OGE)

Decay model

- Use ³P₀, phenomenological decay model
 - Calculate decay amplitudes of unmixed states to $N\pi$, $N\eta$, ΛK
- Find decay amplitudes as a function of θ_S and θ_D
- Compare to Pitt-ANL analysis results

Extracted mixing angles

	[] ₁ ⇔πN	[] ₂ ⇒πN	[]₁⇔ηN	[] ₂ ⇔ηN	[] ₂ ⇔ΛΚ
θ_{S}	41°	33°	-8°	39°	~20°
θ_{D}	9 º	21º		>11°	

- Model does not fully describe $S_{11}(1535) \Rightarrow \eta N$
- Mixing angles $\theta_S \sim 35-40^\circ$, $\theta_D \sim 10-20^\circ$
- Other determinations: $\theta_S \sim 32^\circ$, $\theta_D \sim -10^\circ$
 - B. Saghai and Z. Li
 - Hey, Litchfield and Cashmore ('75)

New insights from lattice QCD

 Is the potential model picture reasonable, at least for heavy-quark systems?

 Can lattice calculations explain the position of the light positive-parity states (like the Roper)?

Confinement in heavy quark mesons

- · Bali et al.
- Static quark and antiquark separated by 2 fm
- Gluonic flux shows tube structure between quarks

How should we treat confinement?

- Quenched lattice measurement of QQQ potential
- Takahashi, Matsufuru, Nemoto and Suganuma, PRL86 (2001) 18.
- Measure potential with 3Q-Wilson loop (static quarks) for 0<t<T
- Also fit $Q\overline{Q}$ potential to compare σ and Coulomb terms

Confinement

- Quenched lattice calculation of QQQ static potential
 - Takahashi, Matsufuru,
 Nemoto and & Suganuma,
 PRL86 (2001) 18,
 hep-lat/0210024
 - Plot vs. L_{min} = min. length Y-shaped string for 24 configurations
- ⇒ String-like flux-tube potential in QQQ baryons

$$V_{\rm B}(r_1,r_2,r_3) = \sigma(l_1+l_2+l_3) = \sigma L_{\rm min}$$

Flux tube in QQQ baryons

- Abelian action distribution of gluons and light quarks nr. QQQ
- Ichie, Bornyakov, Struer & Schierholz, hep-lat/0212024

Leading Born-Oppenheimer approximation

- · Juge, Kuti, Morningstar PRL82, 4400 ('99)
 - Born Oppenheimer approximation for heavyquark mesons
 - Use heavy-quark adiabatic potentials from lattice, including excited glue states
 - No light-quarks, no quark spin or retardation effects
- Compared to NRQCD results (Morningstar)
 - Retardation effects and mixing between states in different adiabatic potentials allowed

LBO approximation...

- Good agreement (10%) for level splittings of 4 conventional and 2 hybrid heavy-quark mesons
 - Partially explains success of constituent quark model
 - Allows inclusion of gluon dynamics
- Current LQCD studies:
 - Does LBO survive inclusion of quark spin?
 - OK, but worse in charmonium than upsilon
 - Drummond et al PLB478, 151 ('00)
 - Burch and Toussaint, hep-lat/0305008
 - Do light dynamical quarks spoil this picture?

Light quark effects on potential?

- Explore string breaking using two-body operators
- · Allow two flavors of dynamical staggered quarks

Baryon spectroscopy in lattice QCD

- Recent progress in understanding first excited states ($J^{\pi}=1/2^+$, $1/2^-$)
 - If pion masses ~500 MeV, calculated masses N1/2+ < N1/2- < N*1/2+ with roughly equal spacing
 - Physical state at (940/1535/1440)
 - Problem with quenched approximation?
 - Problem with m_{π} (light quark masses) being too large?

Baryon spectroscopy in LQCD...

- C. Maynard, D.G. Richards (LHPC/UKQCD)
 - Show that this remains true in full (unquenched) QCD at $m_\pi \sim 500~\text{MeV}$
- Light quarks (m_{π}) :
 - Wilson fermions: $m_{\pi} \sim 400 \text{ MeV}$
 - Smoothed actions (FLIC) $m_{\pi} \sim 300 \text{ MeV}$
 - Have chiral symmetry only in a⇒0 limit
- Overlap/domain wall fermions
 - Have exact analog of χ -symm. at finite a
 - Other physics and calculational advantages
 - But cost a factor of 30 in CPU time!

Light m_{π} baryon masses in LQCD

- F. Lee et al. (Kentucky collaboration) hep-lat/0208070
- Use overlap fermions and simple qqq operators
- Levels cross at low m_{π}

Light m_{π} baryon masses in LQCD...

• Same level crossing observed in light $\Lambda 1/2^+$ and $\Lambda 1/2^-$ states

Light m_{π} baryon masses in LQCD...

Also shows approximate degeneracy of Δ*3/2+ and Δ3/2-

Baryon spectroscopy in LQCD...

- Chiral behavior is important!
 - Non-analytic terms present in low m_π limit give rapidly varying behavior
 - Need to make (quenched) $\chi\text{-PT}$ extrapolations of lattice data to low m_π
- Roper likely a qqq state
 - Bare quark model qqq state should be too massive!
 - Couples strongly to $N\pi$ decay channel
 - Model with baryon-meson loops?
- Constituent quark model without loop effects will miss this important physics

Loop effects in baryon spectrum

Two approaches:

- Include elementary (bare) qqq excitations in careful calculation of reaction observables
 - · Include rescattering into open B'M channels
 - S. Krewald, et al. (Juelich), T. Sato & H. Lee,
 C. Bennhold & GWU group
- Explicitly evaluate hadron loop corrections to masses and decays
 - Mesons $(\rho-\omega)$: P. Geiger and N. Isgur

Unquenching the quark model

- In QCD $qqq(q\overline{q})$ configurations possible in baryons: effect on CQM?
 - Model with baryon-meson intermediate states,
 loops ⇒ self energies: Danielle Morel & SC
 - High-momentum part of loops contains OBE

Unquenching the quark model...

- · Hecht, Roberts, Tandy, Thomas,...
 - Schwinger-Dyson Bethe-Salpeter study
 - examine m_{π} dependence of $N\pi$ loop contribution to nucleon mass
- · D. Morel and A. Thomas
 - Studying m_π dependence of contributions to resonance masses from Nπ & $\Delta\pi,...$ loops
 - Non-analytic behavior in extrapolation of lattice data for baryon masses to light quark (pion) masses

Summary

- New data from JLab and elsewhere
 - Contains evidence for new (missing) baryon states
 - Refines our knowledge of existing states
- · Unitary multi-channel analysis of this data
 - Will establish new states
 - Can distinguish between QCD-inspired models
- Dramatic new lattice calculations
 - Support flux-tube potential model picture, at least for heavy-quark hadrons
 - Point to importance of decay-channel couplings with light quarks

Summary...

- Challenges to theory:
 - Analysis of data in many channels:
 - Reduce ambiguities in analysis by incorporating constraints from:
 - Multi-channel unitarity, analyticity, gauge invariance,...
 - Efficient treatment of 'background' consistent with these constraints
 - Include effects of open channels in:
 - Lattice QCD calculations
 - Reaction models
 - QCD-inspired models

Jlab Users Group Mtg. 2003-55